Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Med Chem ; 67(6): 4870-4888, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38478882

RESUMO

(E/Z)-3-(4-((E)-1-(4-Hydroxyphenyl)-2-phenylbut-1-enyl)phenyl)acrylic acid (GW7604) as a carrier was esterified with alkenols of various lengths and coordinated through the ethylene moiety to PtCl3, similar to Zeise's salt (K[PtCl3(C2H4)]). The resulting GW7604-Alk-PtCl3 complexes (Alk = Prop, But, Pent, Hex) degraded in aqueous solution only by exchange of the chlorido ligands. For example, GW7604-Pent-PtCl3 coordinated the amino acid alanine in the cell culture medium, bound the isolated nucleotide 5'-GMP, and interacted with the DNA (empty plasmid pSport1). It accumulated in estrogen receptor (ER)-positive MCF-7 cells primarily via cytosolic vesicles, while it was only marginally taken up in ER-negative SKBr3 cells. Accordingly, GW7604-Pent-PtCl3 and related complexes were inactive in SKBr3 cells. GW7604-Pent-PtCl3 showed high affinity to ERα and ERß without mediating agonistic or ER downregulating properties. GW7604-Alk ligands also increased the cyclooxygenase (COX)-2 inhibitory potency of the complexes. In contrast to Zeise's salt, the GW7604-Alk-PtCl3 complexes inhibited COX-1 and COX-2 to the same extent.


Assuntos
Antineoplásicos , Humanos , Antineoplásicos/farmacologia , Receptor alfa de Estrogênio/genética , Células MCF-7 , Receptores Proteína Tirosina Quinases , Receptor beta de Estrogênio , Ligantes
3.
J Med Chem ; 66(22): 15256-15268, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37937969

RESUMO

Platinum-based chemotherapeutics are a cornerstone in the treatment of many malignancies. However, their dose-limiting side effects have rooted efforts to develop new drug candidates with higher selectivity for tumor tissues and less problematic side effects. Here, we developed a cytotoxic platinum(II) complex based on Zeise's salt, containing the nonsteroidal anti-inflammatory drug acetylsalicylic acid and alanine as ligands (4). The previously developed complex (5) displayed high reactivity against sulfur-containing biomolecules; therefore, we put the focus on the optimization of the structure regarding its stability. Different amino acids were used as biocompatible chelating ligands to achieve this aim. Differences in the coordination sphere caused pronounced changes in the stability of Zeise-type precursors 1-3. Coordination with l-Ala through N in the trans position to ethylene showed the most promising results and was employed to stabilize 5. As a result, complex 4 showed improved stability and cytotoxicity, outperforming both 5 and 1.


Assuntos
Antineoplásicos , Platina , Platina/química , Aminoácidos , Antineoplásicos/farmacologia , Antineoplásicos/química , Quelantes/farmacologia , Aspirina/farmacologia , Aspirina/química , Ligantes
4.
J Med Chem ; 66(12): 8238-8250, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37294951

RESUMO

The reactivities of halido[1,3-diethyl-4,5-diphenyl-1H-imidazol-2-ylidene]gold(I) (chlorido (5), bromido (6), iodido (7)), bis[1,3-diethyl-4,5-diphenyl-1H-imidazol-2-ylidene]gold(I) (8), and bis[1,3-diethyl-4,5-diphenyl-1H-imidazol-2-ylidene]dihalidogold(III) (chlorido (9), bromido (10), iodido (11)) complexes against ingredients of the cell culture medium were analyzed by HPLC. The degradation in the RPMI 1640 medium was studied, too. Complex 6 quantitatively reacted with chloride to 5, while 7 showed additionally ligand scrambling to 8. Interactions with non-thiol containing amino acids could not be detected. However, glutathione (GSH) reacted immediately with 5 and 6 yielding the (NHC)gold(I)-GSH complex 12. The most active complex 8 was stable under in vitro conditions and strongly participated on the biological effects of 7. The gold(III) species 9-11 were completely reduced by GSH to 8 and are prodrugs. All complexes were tested for inhibitory effects in Cisplatin-resistant cells, as well as against cancer stem cell-enriched cell lines and showed excellent activity. Such compounds are of utmost interest for the therapy of drug-resistant tumors.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/química , Compostos de Bifenilo , Técnicas de Cultura de Células , Ouro/química , Hidrocarbonetos Halogenados/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...